Preliminary communication

DIFLUOROCARBENE COMPLEXES OF RUTHENIUM DERIVED FROM TRIFLUOROMETHYL COMPOUNDS. RuCl₂(CF₂)(CO)(PPh₃)₂, RuCl₂(CFNMe₂)(CO)(PPh₃)₂, RuCl₂(CFOMe)(CO)(PPh₃)₂ AND THE STRUCTURE OF Ru(CF₃)(HgCF₃)(CO)₂(PPh₃)₂

G.R. CLARK, S.V. HOSKINS and W.R. ROPER^{*} Department of Chemistry, University of Auckland, Auckland (New Zealand) (Received May 4th, 1982)

Summary

Ru(CO)₃(PPh₃)₂ or Ru(CO)₂(PPh₃)₃ with Hg(CF₃)₂ gives Ru(CF₃)(HgCF₃)-(CO)₂(PPh₃)₂. X-ray crystal structure determination reveals an octahedral geometry and the average C—F distance in the CF₃ group which is Ru-bound is 0.1 Å longer than in the CF₃ group Hg-bound. This and other Ru—CF₃ complexes such as Ru(CF₃)Cl(CO)₂(PPh₃)₂ react with aqueous acids converting the CF₃ group to a CO group. Difluorocarbene complexes are implicated in these reactions and a crystalline example of such a compound is RuCl₂(CF₂)(CO)(PPh₃)₂ derived from Ru(CF₃)Cl(CO)(MeCN)(PPh₃)₂ and dry HCl gas in benzene solution. RuCl₂(CF₂)(CO)(PPh₃)₂ is readily hydrolysed to RuCl₂(CO)₂(PPh₃)₂, while Me₂NH gives RuCl₂(CFNMe₂)(CO)(PPh₃)₂, MeOH gives RuCl₂(CFOMe)(CO)(PPh₃)₂, and ethanediol gives RuCl₂(COCH₂CH₂O)-(CO)(PPh₃)₂.

The successful characterisation of stable dichlorocarbene complexes of ruthenium and osmium, $\operatorname{RuCl_2(CCl_2)(CO)(PPh_3)_2}[1]$ and $\operatorname{OsCl_2(CCl_2)(CO)}(PPh_3)_2$ [2], suggested the possibility of isolating crystalline complexes containing transition metal-bound difluorocarbene, e.g., $\operatorname{RuCl_2(CF_2)(CO)(PPh_3)_2}$. The tetraphenylporphyrin-iron system which provides the molecules $\operatorname{Fe}(\operatorname{TPP})(\operatorname{CX}_2)$ for $\operatorname{CX}_2 = \operatorname{CCl_2}$, $\operatorname{CBr_2}$, CFCl , and CFBr does not yield a pure crystalline material for $\operatorname{Fe}(\operatorname{TPP})(\operatorname{CF}_2)$ although such a species was detected spectroscopically [3]. Another report describes $[\operatorname{CpMo}(\operatorname{CF}_2)(\operatorname{CO})_3]^+$ detected by ${}^{19}\operatorname{F}$ and ${}^{13}\operatorname{C}$ NMR spectroscopy, but not isolated as a solid, from the reaction of $\operatorname{CpMo}(\operatorname{CF}_3)(\operatorname{CO})_3$ with SbF_5 in liquid SO_2 [4].

We have approached the synthesis of $\operatorname{RuCl}_2(\operatorname{CF}_2)(\operatorname{CO})(\operatorname{PPh}_3)_2$ by first introducing a trifluoromethyl group into a ruthenium (II) complex and

0022-328X/82/0000-0000/\$02.75 © 1982 Elsevier Sequoia S.A.,

attempting, either through F^- abstraction, or through fluoride migration to metal, conversion to a difluorocarbene complex. We have found H^+ to be a suitable reagent for F^- abstraction.

Introduction of a CF_3 group was achieved by reaction between $Hg(CF_3)_2$ and either $\operatorname{Ru}(\operatorname{CO})_2(\operatorname{PPh}_3)_3$ [5] or $\operatorname{Ru}(\operatorname{CO})_3(\operatorname{PPh}_3)_2$ [6] to give $Ru(CF_3)(HgCF_3)(CO)_2(PPh_3)_2$. An X-ray crystal structure determination was performed on this molecule because it provides a unique opportunity to make an internal comparison of the dimensions of a CF_3 transition metal-bound and a CF_3 main group-bound. The crystals form as colourless needles in the monoclinic space group $P2_1/c$ with 4 molecules in a unit cell of dimensions a 13.983(2), b 19.424(2), c 15.876(3) Å, β 118.03(1)°. Intensity data were collected on an automatic diffractometer using Mo- K_{α} -radiation. The structure was solved by conventional methods and is being refined by least-squares techniques. The residual, $R_{\rm o}$ is presently 0.041 (phenyl rings assigned isotropic temperature factors, other atoms anisotropic) for 2654 observed reflections. The structure is shown in Fig. 1 along with important dimensions. As expected the average C-F distance for the Ru-CF₃ group is almost 0.1 Å longer than the average C-F distance for the Hg-CF₃ group. This bond weakening is reflected in the chemistry to be described.

The ruthenium—mercury bond is conveniently cleaved by Cl_2 in a quantitative reaction yielding $Ru(CF_3)Cl(CO)_2(PPh_3)_2$. Further reaction chemistry should be followed in Scheme 1. The high $\nu(CO)$ values for $Ru(CF_3)Cl(CO)_2$ - $(PPh_3)_2$ (see Table 1) point to the lability of a carbonyl ligand and indeed dissolution in acetonitrile leads to $Ru(CF_3)Cl(CO)(MeCN)(PPh_3)_2$. The three trifluoromethyl derivatives above react with aqueous perchloric acid in a quantitative conversion of the CF₃ group to a CO, i.e. to form $[Ru(HgCF_3)(CO)_3$ -

Fig. 1. Molecular structure of $Ru(CF_3)(HgCF_3)(CO)_2(PPh_3)_2$ with phenyl groups omitted for clarity. Important geometrical parameters are: Ru-Hg 2.628(1), Ru-C(3) 2.084(13), Ru-C(1) 2.038(16), Ru-C(2) 1.948(15), C(3)-F 1.38(1) (average), C(4)-F 1.29(1) Å (average); < Ru-Hg-C(4) 173.0(4)°.

Scheme 1. Synthesis and reactions of $RuCl_2(CF_2)(CO)L_2$ (L = PPh₃)

 $(PPh_3)_2]^+$, $[RuCl(CO)_3(PPh_3)_2]^+$ and $[RuCl(CO)_2(MeCN)(PPh_3)_2]^+$, respectively. This remarkable reactivity of a metal-bound CF₃ group suggests the intermediacy of a CF₂-complex which is rapidly hydrolysed to CO, viz.:

$$L_n RuCF_3 \xrightarrow{H^+} L_n Ru = CF_2]^+ \xrightarrow{H_2O} L_n RuCO]^+$$

We have trapped RuCl₂(CF₂)(CO)(PPh₃)₂ by reaction of Ru(CF₃)Cl(CO)(MeCN)-(PPh₃)₂ with dry HCl gas in dry benzene. This complex forms colourless crystals, is extremely moisture-sensitive, and exhibits ν (C—F) IR activity at 1210 and 1155 cm⁻¹, a position almost 200 cm⁻¹ higher than the precursor CF₃ complex (see Table 1).

Compound ^b	ν(CO) (cm ⁻¹)	ν(CF) (cm ⁻¹)	Other bands (cm ⁻¹)	Chemical shifts $(\tau)^c$
$Ru(CF_3)(HgCF_3)(CO)_2L_2$	2018,1963	1102,1051,1012 960	·	
$Ru(CF_3)Cl(CO)_2L_2$	2061,2005	1073,1006,990 980,974,965		
Ru(CF ₃)Cl(CO)(MeCN)L ₂	1950	1060,985,963 958	2320,2220 v(CN)	
$[Ru(HgCF_3)(CO)_3L_2]^+$	2093,2043 2022	1108,1057	-	
$[RuCl(CO)_{1}(MeCN)L_{2}]^{+}$ $RuCl_{1}(CF_{1})(CO)L_{2}$	2069,2012 $2035,2014^{d}$	1210.1184		
	2000,2011	1155m,1138m		
RuCl ₂ (CFNMe ₂)(CO)L ₂	1979	1026 m	נCN) ע 1572)	7.27d, ⁴ J(F-H) 2 Hz, N(CH ₃) ₂ 7.90d, ⁴ J(F-H) 5 Hz. N(CH ₃) ₂
[RuCl(CFNMe ₂)(CO)(CNR)L ₂] ^{+ e}	2003	1038 m	2163,1501	7.10d, ⁴ J(F-H) 2 Hz, N(CH ₃) ₂
			ν(CN)	7.32d, ${}^{4}J(F-H) 5 Hz$, N(CH,),
$RuCl_2(CFOMe)(CO)L_2$	1973	1060 m	1310,1281 ν(CO)	7.10 3HOCH 3
RuCl ₂ (COCH ₂ CH ₂ O)(CO)L ₂	1970		1228 v(CO)	

IR^a AND ¹H NMR DATA FOR TRIFLUOROMETHYL- AND FLUOROCARBENE-RUTHENIUM DERIVATIVES

^aMeasured as Nujol mulls; all bands strong unless indicated otherwise. ^b L = PPh₃, satisfactory elemental analyses obtained for all compounds, cations as perchlorate salts. ^cIn CDCl₃ solution. ^dSolid-state splitting ^eR = p-tolyl.

A selection of the simple reactions of $\operatorname{RuCl_2(CF_2)(CO)(PPh_3)_2}$ is given in Scheme 1. Water produces $\operatorname{RuCl_2(CO)_2(PPh_3)_2}$, ethanediol the dioxolanylidene complex, $\operatorname{RuCl_2(COCH_2CH_2O)(CO)(PPh_3)_2}$ and methanol the fluoromethoxy carbene complex, $\operatorname{RuCl_2(CFOMe)(CO)(PPh_3)_3}$. Dimethylamine gives the fluoro dimethylamino carbene complex, $\operatorname{RuCl_2(CFNMe_2)(CO)(PPh_3)_2}$. The ¹H NMR spectra of this compound and the derived cation show long-range coupling of the NMe₂ groups to fluorine (see Table 1). Related complexes, $\operatorname{CH_3C_5H_4Mn}$ -(CFNEt₂)(CO)₂ and C₅H₅Mn(CFPh)(CO)₂ have been described from addition of F⁻ to cationic carbyne complexes [7].

We thank the N.Z. Universities Grants Committee for grants towards instrumental facilities and Johnson Matthey for a generous loan of ruthenium.

References

- 1 W.R. Roper and A.H. Wright, J. Organometal. Chem., 233 (1982) C59.
- 2 G.R. Clark, K. Marsden, W.R. Roper and L.J. Wright, J. Amer. Chem. Soc., 102 (1980) 1206.
- 3 D. Mansuy, Pure Appl. Chem., 52 (1980) 681.
- 4 D.L. Reger and M.D. Dukes, J. Organometal. Chem., 153 (1978) 67.
- 5 B.E. Cavit, K.R. Grundy and W.R. Roper, J. Chem. Soc. Chem. Commun., (1972) 60.
- 6 J.P. Collman and W.R. Roper, J. Amer. Chem. Soc., 87 (1965) 4008.
- 7 E.O. Fischer, W. Kleine and F.R. Kreissl, Angew. Chem. Internat. Edn., 15 (1976) 616; E.O. Fischer, W. Kleine, W. Schambeck and U. Schubert, Z. Naturforsch. B. 36 (1981) 1575.

TABLE 1